The Use of Cases as Heuristics to speed up Multiagent Reinforcement Learning

نویسندگان

  • Reinaldo A. C. Bianchi
  • Ramón López de Mántaras
چکیده

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Accelerated Reinforcement Learning (HARL), in which RL methods are accelerated by making use of heuristic information. CB-HAMRL is a subset of MRL that makes use of a heuristic function H derived from a case base, in a Case Based Reasoning manner. An algorithm that incorporates CBR techniques into the Heuristically Accelerated Minimax–Q is also proposed and a set of empirical evaluations were conducted in a simulator for the robot soccer domain, comparing the three solutions for this problem: MRL, HAMRL and CB-HAMRL. Experimental results show that using CB-HAMRL, the agents learn faster than using RL or HAMRL methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Case-Based Multiagent Reinforcement Learning: Cases as Heuristics for Selection of Actions

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case-Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case-Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Acce...

متن کامل

Heuristic Selection of Actions in Multiagent Reinforcement Learning

This work presents a new algorithm, called Heuristically AcceleratedMinimax-Q (HAMMQ), that allows the use of heuristics to speed up the wellknown Multiagent Reinforcement Learning algorithm Minimax-Q. A heuristic function H that influences the choice of the actions characterises the HAMMQ algorithm. This function is associated with a preference policy that indicates that a certain action must ...

متن کامل

Using Case Based Heuristics to Speed up Reinforcement Learning

The aim of this work is to combine three successful AI techniques –Reinforcement Learning (RL), Heuristics Search and Case Based Reasoning (CBR)– creating a new algorithm that allows the use of cases in a case base as heuristics to speed up Reinforcement Learning algorithms. This approach, called Case Based Heuristically Accelerated Reinforcement Learning (CB-HARL), builds upon an emerging tech...

متن کامل

State Elimination in Accelerated Multiagent Reinforcement Learning

This paper presents a novel algorithm of Multiagent Reinforcement Learning called State Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL), that successfully produces faster learning without incorporating internal knowledge or human intervention such as reward shaping, transfer learning, parameter tuning, and even heuristics, into the learning system. Since the learning spee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009